The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] lightwave circuit(27hit)

1-20hit(27hit)

  • Surface Mount Technology for Silica-Based Planar Lightwave Circuit and Its Application to Compact 16×16 Multicast Switch

    Ai YANAGIHARA  Keita YAMAGUCHI  Takashi GOH  Kenya SUZUKI  

     
    PAPER

      Pubricized:
    2020/06/05
      Vol:
    E103-C No:11
      Page(s):
    679-684

    We demonstrated a compact 16×16 multicast switch (MCS) made from a silica-based planar lightwave circuit (PLC). The switch utilizes a new electrical connection method based on surface mount technology (SMT). Five electrical connectors are soldered directly to the PLC by using the standard reflow process used for electrical devices. We reduced the chip size to half of one made with conventional wire bonding technology. We obtained satisfactory solder contacts and excellent switching properties. These results indicate that the proposed method is suitable for large-scale optical switches including MCSs, variable optical attenuators, dispersion compensators, and so on.

  • Development of Low Loss Ultra-High Δ ZrO2-SiO2 PLC for Next Generation Compact and High-Density Integrated Devices Open Access

    Masanori TAKAHASHI  Yasuyoshi UCHIDA  Shintaro YAMASAKI  Junichi HASEGAWA  Takeshi YAGI  

     
    INVITED PAPER

      Vol:
    E97-C No:7
      Page(s):
    725-730

    For next generation planar lightwave circuit (PLC) devices, high function and high-density integration are required as well as downsizing and cost reduction. To realize these needs, high refractive index difference between a core and a clad $(Delta)$ is required. To use PLC for practical applications, silica-based PLC is one of the most attractive candidate. However, degradation of the optical properties and productivity occur when $Delta$ of the core becomes high. Thus, $Delta$ of most of the conventional PLC with GeO$_2$-SiO$_2$ core is designed less than 2.5%. In this paper, we report a silica-based ultra-high $Delta $ PLC with ZrO$_2$-SiO$_2$ core. 5.5%-$Delta$ ZrO$_2$-SiO$_2$ PLC has been realized with low propagation loss and basic characteristics has been confirmed. Potential of chip size reduction of the ZrO$_2$-SiO$_2$ PLC is shown.

  • High Speed Quantum Key Distribution System

    Akio TAJIMA  Akihiro TANAKA  Seigo TAKAHASHI  Ken-ichiro YOSHINO  Yoshihiro NAMBU  

     
    INVITED PAPER

      Vol:
    E93-A No:5
      Page(s):
    889-896

    Quantum key distribution (QKD) systems can generate unconditionally secure common keys between remote users. Improvements of QKD performance, particularly in key generation rate, have been required to meet current network traffic. A high-speed QKD system should be equipped with low-loss receivers with high visibility, highly efficient photon detectors with small dark count probability. A solution to these issues is to employ planar lightwave circuit (PLC) interferometers, single photon detection circuits and modules, together with multi-wavelength channels transmission using wavelength division multiplexing (WDM) technique.

  • High-Speed Photonic Functional Circuits Using Electrically Controllable PLZT Waveguides

    Jiro ITO  Mitsuhiro YASUMOTO  Keiichi NASHIMOTO  Hiroyuki TSUDA  

     
    PAPER-Optoelectronics

      Vol:
    E92-C No:5
      Page(s):
    713-718

    We fabricated a high-speed wavelength tunable arrayed-waveguide grating (AWG) and an AWG integrated with optical switches using (Pb,La)(Zr,Ti)O3-(PLZT). PLZT has a high electro-optic (EO) coefficient, which means these devices have considerable potential for use in reconfigurable optical add drop multiplexers (ROADMs). The PLZT waveguides in this work have a rib waveguide structure with an effective relative index difference (Δ) of 0.65%. Both AWGs have 8 channels with a frequency spacing of 500 GHz. The fabricated wavelength tunable AWGs allows us to freely shift the output at a particular wavelength to an arbitrary port by applying voltages to 3 mm long electrodes formed on each of the waveguides. We confirmed that the maximum tuning range with driving voltage of 22 V was approximately 32 nm at 1.55 µm. With the integrated 8-ch PLZT waveguide switch array, we could also select the output port by setting the drive voltage applied to the switch array. 2 2 directional coupler switches were used for the switch array. The two devices exhibited insertion losses of 17 dB and 19 dB, adjacent crosstalk of -18.5 dB and -19.7 dB, and a maximum extinction ratio of 19.6 dB and 12.6 dB, respectively. The tuning speed of both devices was 15 ns and their physical sizes were 9.0 23.0 mm and 8.0 29.5 mm, respectively.

  • Arrayed Waveguide Gratings and Their Application Using Super-High-Δ Silica-Based Planar Lightwave Circuit Technology Open Access

    Koichi MARU  Hisato UETSUKA  

     
    INVITED PAPER

      Vol:
    E92-C No:2
      Page(s):
    224-230

    This paper reviews our recent progress on arrayed waveguide gratings (AWGs) using super-high-Δ silica-based planar lightwave circuit (PLC) technology and their application to integrated optical devices. Factors affecting the chip size of AWGs and the impact of increasing relative index difference Δ on the chip size are investigated, and the fabrication result of a compact athermal AWG using 2.5%-Δ silica-based waveguides is presented. As an application of super-high-Δ AWGs to integrated devices, a flat-passband multi/demultiplexer consisting of an AWG and cascaded MZIs is presented.

  • Compact Silica Arrayed-Waveguide Grating Using High-Mesa Small-Bend Waveguides

    Jiro ITO  Tom Yen-Ting FAN  Takanori SUZUKI  Hiroyuki TSUDA  

     
    LETTER-Optoelectronics

      Vol:
    E91-C No:1
      Page(s):
    110-112

    A compact arrayed-waveguide grating with small-bend waveguides incorporating air trenches and high mesa structures has been proposed. An 8-channel, 100-GHz-spacing silica arrayed-waveguide grating was fabricated, and its size was reduced dramatically to 1/4 of that of a conventional device.

  • Si Photonic Wire Waveguide Devices

    Hirohito YAMADA  Tao CHU  Satomi ISHIDA  Yasuhiko ARAKAWA  

     
    INVITED PAPER

      Vol:
    E90-C No:1
      Page(s):
    59-64

    We fabricated various microscopic optical devices with Si photonic wire waveguides and demonstrated their fundamental characteristics. The bending loss of the waveguide was practically negligible when the bending radius of the waveguide exceeded 5 µm. Therefore, we can fabricate very compact optical devices with the waveguide. We demonstrated an optical directional coupler with the waveguide. The coupling length of the directional coupler was extremely small, several micrometers, because of strong optical coupling between the waveguide cores. We also demonstrated ultrasmall optical add/drop multiplexers (OADMs) with Bragg grating reflectors constructed from the waveguides. The dropping wavelength bandwidth of the OADM device was less than 2 nm and the dropping center wavelength could be tuned using thermooptic control with a microheater formed on the Bragg reflector. Using the Si photonic wire waveguide, we also demonstrated thermooptic switches by forming a microheater on a branch of a Mach-Zehnder interferometer made up of the waveguides. In this switching operation, we observed an extinction ratio exceeding 30 dB, a switching power less than 90 mW, and a switching response speed less than 100 µs using a 12 optical switch with an 8530 µm2 footprint.

  • Low-Phase Noise Photonic Millimeter-Wave Generator Using an AWG Integrated with a 3-dB Combiner

    Akihiko HIRATA  Hiroyoshi TOGO  Naofumi SHIMIZU  Hiroshi TAKAHASHI  Katsunari OKAMOTO  Tadao NAGATSUMA  

     
    PAPER-Millimeter-Wave Technologies

      Vol:
    E88-C No:7
      Page(s):
    1458-1464

    We present a low-phase-noise and frequency-tunable photonic millimeter-wave (MMW) generator based on two-mode beating. The generator consists of a single-mode laser, an external optical intensity modulator, and a planar lightwave circuit (PLC) on which an arrayed-waveguide grating (AWG) and 3-dB optical combiners are integrated. Because the AWG and the optical combiners are connected with optical waveguides and the optical path length difference between the two modes filtered by the AWG is kept constant, the phase fluctuation of the generated MMW signal is suppressed. The generator can generate MMWs with a phase noise of less than -75 dBc/Hz at 100 Hz and has a frequency tunability in a range of 90 to 125 GHz. The generator can be applied for the local oscillator (LO) in 10-Gbit/s wireless links that use heterodyne detection.

  • 160-Gbit/s Full Channel Optical Time-Division Demultiplexer Based on SOA-Array Integrated PLC and Its Application to OTDM Transmission Experiment

    Ippei SHAKE  Hidehiko TAKARA  Ikuo OGAWA  Tsutomu KITOH  Minoru OKAMOTO  Katsuaki MAGARI  Takuya OHARA  Satoki KAWANISHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E88-B No:1
      Page(s):
    203-209

    This paper presents 160-Gbit/s full channel time-division demultiplexing using a semiconductor optical amplifier hybrid integrated demultiplexer on a planer lightwave circuit. Error-free demultiplexing from a 160-Gbit/s signal to 8 channel 20 Gbit/s signals is successfully demonstrated. Results of a 160-Gbit/s optical time-division-multiplexed full channel OTDM signal transmission experiment using the circuit and successful 80-km transmission are presented.

  • Liquid Crystal Polarization Controller Arrays on Planar Lightwave Circuits

    Katsuhiko HIRABAYASHI  Chikara AMANO  

     
    INVITED PAPER-OECC Awarded Paper

      Vol:
    E86-C No:5
      Page(s):
    753-761

    We have formed simple polarization-controller arrays by inserting liquid crystal (LC) in trenches cut across planar lightwave circuits (PLCs). We fabricated LC layers for use as polarization controllers on PLCs in two ways; in one, the ultra-thin layer of LC is held in a cell that is inserted into a trench on the PLC while in the other, the trench is directly filled with the LC. The ultra-thin LC cell can change the phase of 1.55-µm light from 0 to 3π while the LC filling can change the phase of light at the same wavelength from 0 to 12π below 5Vrms. Two former parallel-aligned ultra-thin LC cells, where the directions of alignment of the liquid crystals are rotated by 45 relative to each other, are capable of converting light with an arbitrary input polarization to TE or TM polarization. Ultra-thin cells of twisted nematic LC can switch the polarization between TE and TM modes with an extinction ratio of -15dB. The array we fabricated had a pitch of 1 mm and 5 elements, but an array with more than 100 elements and a pitch below 125µm will easily be possible by using finely patterned transparent electrodes. We have also applied our techniques to the fabrication of LC-based variable optical attenuators (VOA) on the PLC.

  • Hybrid Integration Technologies Using Planar Lightwave Circuits and Developed Components

    Takeshi KITAGAWA  Yuji AKAHORI  Ikuo OGAWA  Yuichi TOHMORI  

     
    INVITED PAPER-Hybrid and Passive Devices

      Vol:
    E85-C No:4
      Page(s):
    1009-1017

    We describe hybrid integration technologies that employ silica-based planar lightwave circuit (PLC) platforms, and report several high-performance optical components based on these technologies. First, we describe the requirements for optical integrated circuits. Then, we discuss the technologies used in hybrid integration, namely optical coupling between a semiconductor optical device and a silica waveguide, electrical signal transmission to the semiconductor optical device, and high quality optical signal processing. In addition, we describe optical integrated circuits developed for short- and long-haul networks. We realized these high-performance integrated components by combining appropriate hybrid integration technologies.

  • Characterization of a Set of Fabry-Perot Etalons Integrated in a Planar Lightwave Circuit

    Mitsuhiro TATEDA  Tomoko ARITA  Takashige OMATSU  

     
    LETTER-Fiber-Optic Transmission

      Vol:
    E85-B No:4
      Page(s):
    831-834

    We propose a set of Fabry-Perot etalons integrated in a planar lightwave circuit (PLC-FPE) designed for a unified system for broadcasting and communication. A PLC-FPE containing four etalons having different cavity lengths is fabricated and their loss and frequency characteristics are investigated. The total loss and the maximum finesse were found to be 8 dB and 34, respectively.

  • Recent Progress on Arrayed Waveguide Gratings for DWDM Applications

    Akimasa KANEKO  Akio SUGITA  Katsunari OKAMOTO  

     
    INVITED PAPER-WDM Network Devices

      Vol:
    E83-C No:6
      Page(s):
    860-868

    We have reviewed recent progress on arrayed waveguide gratings for DWDM applications. AWGs can be used to realize not only mux/demux filters with various channel spacings, but also highly integrated optical components.

  • Hybrid Integrated 44 Optical Matrix Switch Module on Silica Based Planar Waveguide Platform

    Tomoaki KATO  Jun-ichi SASAKI  Tsuyoshi SHIMODA  Hiroshi HATAKEYAMA  Takemasa TAMANUKI  Shotaro KITAMURA  Masayuki YAMAGUCHI  Tatsuya SASAKI  Keiro KOMATSU  Mitsuhiro KITAMURA  Masataka ITOH  

     
    INVITED PAPER-Photonic Switching Devices

      Vol:
    E82-C No:2
      Page(s):
    305-312

    The hybrid electrical/optical multi-chip integration technique for optical modules for optical network system has been developed. Employing the technique, a 44 broadcast-and-select type optical matrix switch module has been realized. The module consists of four sets of silica waveguide 1 : 4 splitters/4 : 1 combiners, four 4-channel arrays of polarization insensitive semiconductor optical amplifiers with spot-size converters as optical gates, printed wiring chips for electrical wiring and single mode fibers for optical signal interface on planar waveguide platform fabricated by atmospheric pressure chemical vapor deposition. All the gates and the wiring chips were mounted precisely onto the platform at once in flip-chip manner by self-align technique using AuSn solder bumps. Coupling loss between the waveguide and the SOA gate was estimated to be 4.5 dB. Averaged fiber-to-fiber signal gain, on-off ratio and polarization dependent loss for each of the signal paths was 7 dB 2 dB, more than 40 dB and 0.5 dB, respectively. High speed 10 Gb/s photonic cell switching as short as 2 nsec has been successfully achieved.

  • Spot-Size-Converter Integrated Semiconductor Optical Amplifiers for Optical Switching Systems

    Takemasa TAMANUKI  Shotaro KITAMURA  Hiroshi HATAKEYAMA  Tatsuya SASAKI  Masayuki YAMAGUCHI  

     
    PAPER-Assembly and Packaging Technologies

      Vol:
    E82-B No:2
      Page(s):
    431-438

    Spot-size-converter integrated semiconductor optical amplifiers have been developed as gate elements for optical switch matrices. An S-shape waveguide has been introduced to prevent re-coupling of unguided light to the output fiber. An angled-facet structure effectively suppressed light reflection at the end facets. Consequently, a high extinction ratio of 70 dB and a high fiber-to-fiber gain of 20 dB were achieved. Sufficient optical coupling characteristics to a flat-ended single-mode fiber with a coupling loss of 3.5 dB were also demonstrated.

  • Hybrid Integrated 44 Optical Matrix Switch Module on Silica Based Planar Waveguide Platform

    Tomoaki KATO  Jun-ichi SASAKI  Tsuyoshi SHIMODA  Hiroshi HATAKEYAMA  Takemasa TAMANUKI  Shotaro KITAMURA  Masayuki YAMAGUCHI  Tatsuya SASAKI  Keiro KOMATSU  Mitsuhiro KITAMURA  Masataka ITOH  

     
    INVITED PAPER-Photonic Switching Devices

      Vol:
    E82-B No:2
      Page(s):
    357-364

    The hybrid electrical/optical multi-chip integration technique for optical modules for optical network system has been developed. Employing the technique, a 44 broadcast-and-select type optical matrix switch module has been realized. The module consists of four sets of silica waveguide 1 : 4 splitters/4 : 1 combiners, four 4-channel arrays of polarization insensitive semiconductor optical amplifiers with spot-size converters as optical gates, printed wiring chips for electrical wiring and single mode fibers for optical signal interface on planar waveguide platform fabricated by atmospheric pressure chemical vapor deposition. All the gates and the wiring chips were mounted precisely onto the platform at once in flip-chip manner by self-align technique using AuSn solder bumps. Coupling loss between the waveguide and the SOA gate was estimated to be 4.5 dB. Averaged fiber-to-fiber signal gain, on-off ratio and polarization dependent loss for each of the signal paths was 7 dB 2 dB, more than 40 dB and 0.5 dB, respectively. High speed 10 Gb/s photonic cell switching as short as 2 nsec has been successfully achieved.

  • Spot-Size-Converter Integrated Semiconductor Optical Amplifiers for Optical Switching Systems

    Takemasa TAMANUKI  Shotaro KITAMURA  Hiroshi HATAKEYAMA  Tatsuya SASAKI  Masayuki YAMAGUCHI  

     
    PAPER-Assembly and Packaging Technologies

      Vol:
    E82-C No:2
      Page(s):
    379-386

    Spot-size-converter integrated semiconductor optical amplifiers have been developed as gate elements for optical switch matrices. An S-shape waveguide has been introduced to prevent re-coupling of unguided light to the output fiber. An angled-facet structure effectively suppressed light reflection at the end facets. Consequently, a high extinction ratio of 70 dB and a high fiber-to-fiber gain of 20 dB were achieved. Sufficient optical coupling characteristics to a flat-ended single-mode fiber with a coupling loss of 3.5 dB were also demonstrated.

  • Silica-Based Planar Lightwave Circuits for WDM Applications

    Katsunari OKAMOTO  Yasuyuki INOUE  Takuya TANAKA  Yasuji OHMORI  

     
    INVITED PAPER-Passive Devices for Photonic Networks

      Vol:
    E81-C No:8
      Page(s):
    1176-1186

    Planar lightwave circuits (PLCs) provide various important devices for optical wavelength division multiplexing (WDM) systems, subscriber networks and etc. This paper reviews the recent progress and future prospects of PLC technologies including arrayed-waveguide grating multiplexers, optical add/drop multiplexers, programmable dispersion equalizers and hybrid optoelectronics integration technologies.

  • Optical Add/Drop Filter with Flat Top Spectral Response Based on Gratings Photoinduced on Planar Waveguides

    Hisato UETSUKA  Hideaki ARAI  Korenori TAMURA  Hiroaki OKANO  Ryouji SUZUKI  Seiichi KASHIMURA  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1205-1208

    High- and low-reflection Bragg gratings with a flat-top spectral response free from ripples are proposed. Add/drop filters are created based on gratings photoinduced on planar waveguides by using the new design schemes. The measured spectral responses for the high and low reflection gratings are in good agreement with the calculated ones, and show the flat-top spectral responses.

  • Wavelength Division Multi/Demultiplexer with Arrayed Waveguide Grating

    Hisato UETSUKA  Kenji AKIBA  Kenichi MOROSAWA  Hiroaki OKANO  Satoshi TAKASUGI  Kimio INABA  

     
    PAPER

      Vol:
    E80-C No:5
      Page(s):
    619-624

    Recently, a wavelength division multi/demultiplexing system has been viewed with keen interest because it is possible to increase the transmission capacity and system flexibility. An arrayed waveguide grating (AWG) type of Multi/demultiplexer which is one of the key components to realize such a system has been developed by using Planar Lightwave Circuits (PLCs). Newly designed optical circuits have been incorporated into the AWG to control the center wavelength and to expand the pass band width. The 3 dB pass band width is 1.4 times that of a conventional AWG. It is confirmed that the newly developed AWG has low polarization dependence, low temperature dependence and high reliability.

1-20hit(27hit)